Gravity waves in a circular well

By JOHN MILES

Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, CA 92093-0225, USA
(Received 1 January 2001 and in revised form 21 November 2001)
The natural frequencies of gravity waves in a circular well that is bounded above by a free surface and below by a semi-infinite reservoir are approximated by neglecting the off-diagonal terms of the characteristic determinant (single-mode approximation) and invoking the known results for an aperture in a half-space (well of zero depth). A parallel argument yields the corresponding results for a two-dimensional well (a slot). Comparison with Molin's (2001) numerical results for a slot suggests that the error in the single-mode approximation is $\lesssim 1 \%$.

1. Introduction

I consider here the small, gravitational oscillations of a liquid in a circular well of radius a and depth h that is bounded above by a free surface and below by a semi-infinite reservoir. The rectangular well has been considered by Molin (2001) as a model of a 'well-bay' or 'moonpool' in a ship. Molin also has considered a slot (two-dimensional) well. The limiting case, $h \rightarrow 0$, for circular and strip apertures has been treated extensively (see Henrici, Troesch \& Wuytack 1970; Troesch \& Troesch 1972; Miles 1972).
I attack the boundary-value problem in $\S 2$ through a Fourier-Bessel series in the well and a Fourier-Bessel integral in the reservoir. The matching of these representations in the mouth yields an integral equation for the determination of the free oscillations and their frequencies. In $\S 3$, I obtain approximations to these frequencies by neglecting the off-diagonal terms in the characteristic determinant. This permits a direct calculation of the eigenvalue for the Helmholtz mode and the calculation of the higher eigenvalues from those for $h=0$ for either the circular well or, through a parallel argument, its two-dimensional counterpart (a slot). Comparison with Molin's (2001) numerical results for a slot suggests that the error in the present approximations is $\lesssim 1 \%$.

2. The boundary-value problem

The boundary-value problem for the circular well is governed by

$$
\begin{gather*}
\nabla^{2} \phi=0 \quad(0<r<1,0<z<h ; \quad 0<r<\infty,-\infty<z<0), \tag{2.1}\\
\phi_{z}=w(r, \theta) \quad(z=0), \quad \phi_{z}=\lambda \phi \quad(0<r<1, z=h), \tag{2.2a,b}\\
\phi_{r}=0 \quad(r=1,0<z<h), \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\phi \rightarrow 0 \quad\left(z<0, R \equiv\left(r^{2}+z^{2}\right)^{1 / 2} \rightarrow \infty\right) \tag{2.4}
\end{equation*}
$$

where $\phi=\phi(r, z, \theta)$ is the complex amplitude of the velocity potential, which we assume to be simple harmonic with angular frequency $\omega ; r, \theta, z$ are dimensionless cylindrical coordinates, with a, the radius of the well, as the unit of length; $w(r, \theta)$ is the complex amplitude of the vertical velocity in the mouth $(0<r<1, z=0) ; w \equiv 0$ in $r>1$;

$$
\begin{equation*}
\lambda \equiv \omega^{2} a / g \tag{2.5}
\end{equation*}
$$

is the eigenvalue.
Separating the azimuthal dependence through the Fourier expansions

$$
\begin{equation*}
\phi(r, \theta, z)=\sum_{m=0}^{\infty} \phi_{m}(r, z) \mathrm{e}^{\mathrm{i} m \theta} \quad(0<z<h), \quad w(r, \theta)=\sum_{m=0}^{\infty} w_{m}(r) \mathrm{e}^{\mathrm{i} m \theta} \tag{2.6a,b}
\end{equation*}
$$

substituting $(2.6 a, b)$ into (2.1)-(2.3), expanding w_{m} in the Fourier-Bessel series

$$
\begin{equation*}
w_{m}(r)=\sum_{n}\left(W_{n} / I_{n}\right) J_{m}\left(k_{n} r\right), \quad W_{n}=\int_{0}^{1} w_{m}(r) J_{m}\left(k_{n} r\right) r \mathrm{~d} r \tag{2.7a,b}
\end{equation*}
$$

where the parametric dependence of k_{n}, I_{n}, W_{n} and, subsequently, Z_{n} and κ_{n}, on m is implicit,

$$
\begin{equation*}
I_{n} \equiv \int_{0}^{1} J_{m}^{2}\left(k_{n} r\right) r \mathrm{~d} r=\left(\frac{k_{n}^{2}-m^{2}}{2 k_{n}^{2}}\right) J_{m}^{2}\left(k_{n}\right) \tag{2.8}
\end{equation*}
$$

and the summation is over the complete, orthogonal set determined by

$$
\begin{equation*}
J_{m}^{\prime}\left(k_{n}\right) \quad\left(0<k_{1}<k_{2}<\cdots\right) \tag{2.9}
\end{equation*}
$$

($k_{0}=0$ is admissible if and only if $h>0$), and solving (2.1) and (2.2a,b) through separation of variables, we obtain

$$
\begin{equation*}
\phi_{m}(r, z)=\sum_{n}\left(k_{n} I_{n}\right)^{-1} W_{n} J_{m}\left(k_{n} r\right) Z_{n}(z) \quad(0<r<1,0<z<h) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{n}(z)=\sinh k_{n} z+\kappa_{n} \cosh k_{n} z, \quad \kappa_{n}=\frac{k_{n}-\lambda \tanh k_{n} h}{\lambda-k_{n} \tanh k_{n} h} \tag{2.11a,b}
\end{equation*}
$$

The solution of (2.1), (2.2a) and (2.4) in the reservoir is given by the Fourier-Bessel integral

$$
\begin{equation*}
\phi_{m}(r, z)=\int_{0}^{1} w_{m}(\eta) \eta \mathrm{d} \eta \int_{0}^{\infty} J_{m}(k r) J_{m}(k \eta) \mathrm{e}^{k z} \mathrm{~d} k \quad(z<0) \tag{2.12}
\end{equation*}
$$

Equating the representations (2.10) and (2.12) in the mouth, we obtain

$$
\begin{equation*}
\sum_{n}\left(\kappa_{n} / k_{n} I_{n}\right) W_{n} J_{m}\left(k_{n} r\right)=\int_{0}^{1} w_{m}(\eta) \eta \mathrm{d} \eta \int_{0}^{\infty} J_{m}(k r) J_{m}(k \eta) \mathrm{d} k \quad(0<r<1) \tag{2.13}
\end{equation*}
$$

for the determination of w_{m}. This integral equation may be transformed to a set of linear equations for the determination of the Fourier-Bessel coefficients W_{n} by substituting w_{m} from (2.7), multiplying by $r J_{m}\left(k_{l} r\right)$, and integrating over $0<r<1$. The end result is

$$
\begin{equation*}
\sum_{l} C_{l n} W_{n}=0, \quad C_{l n}=\delta_{l n}\left(\kappa_{l} / k_{l}\right) I_{l}-\int_{0}^{\infty} Q_{l}(k) Q_{n}(k) \mathrm{d} k \tag{2.14a,b}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{n}(k)=\int_{0}^{1} J_{m}\left(k_{n} r\right) J_{m}(k r) r \mathrm{~d} r=k\left(k_{n}^{2}-k^{2}\right)^{-1} J_{m}\left(k_{n}\right) J_{m}^{\prime}(k) \tag{2.15}
\end{equation*}
$$

3. Single-mode approximation

The eigenvalues of the system (2.14) are determined by the determinantal condition $\left|C_{l n}\right|=0$. The neglect of the off-diagonal terms in this condition or, equivalently, the retention of only a single term in the Fourier-Bessel expansion (2.7a) (Molin's 'single mode approximation') yields

$$
\begin{equation*}
\kappa_{n}=\frac{k_{n}}{I_{n}} \int_{0}^{\infty} Q_{n}^{2}(k) \mathrm{d} k=\left(\frac{2 k_{n}^{3}}{k_{n}^{2}-m^{2}}\right) \int_{0}^{\infty} \frac{J_{m}^{\prime 2}(k) k^{2} \mathrm{~d} k}{\left(k^{2}-k_{n}^{2}\right)^{2}} . \tag{3.1}
\end{equation*}
$$

(The integrand is finite at $k=k_{n}$ by virtue of (2.9).)
The integral in (3.1) is intractable except for the Helmholtz mode ($m=n=0$). Substituting κ_{n} from (2.11b), letting $m=0$, dividing by k_{n}, and letting $k_{n} \rightarrow k_{0} \rightarrow 0$, we obtain

$$
\begin{equation*}
\frac{\kappa_{n}}{k_{n}} \rightarrow \frac{1}{\lambda}-h=2 \int_{0}^{\infty} \frac{J_{1}^{2}(k) \mathrm{d} k}{k^{2}}=\frac{8}{3 \pi} \quad(m=n=0), \tag{3.2}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\lambda=\frac{1}{h+\alpha}, \quad \alpha=\frac{8}{3 \pi}=0.849 . \tag{3.3a,b}
\end{equation*}
$$

This result also follows by analogy with the acoustical problem of a plane wave in a cylindrical tube that terminates in a half-space (Rayleigh 1896, § 312).
Returning to (3.1), we remark that the right-hand side thereof is, and hence the left-hand side also must be, independent of h. Letting $h=0$ and $\lambda=\lambda_{n}^{0}$ in (2.11b), we obtain

$$
\begin{equation*}
\kappa_{n}=k_{n} / \lambda_{n}^{0} \quad\left(k_{n}>0\right), \tag{3.4}
\end{equation*}
$$

where λ_{n}^{0} are the eigenvalues for the aperture problem (Miles 1972, table 1) \dagger It then follows from (2.11b) that the eigenvalues for $h>0$ are given by

$$
\begin{equation*}
\frac{\lambda_{n}^{h}}{k_{n}}=\frac{1+\kappa_{n} \tanh k_{n} h}{\kappa_{n}+\tanh k_{n} h}=\operatorname{coth}\left(k_{n} h+\tanh ^{-1} \kappa_{n}\right) \quad\left(k_{n}>0\right) . \tag{3.5}
\end{equation*}
$$

We remark that (3.5) implies $\lambda_{n}^{0}>\lambda_{n}^{h}>k_{n}$ for all $n \geqslant 1$.
Troesch \& Troesch (1972) infer from their numerical results that

$$
\begin{equation*}
\lambda_{n}^{0} \sim \pi\left(n+\frac{1}{2}|m-1|-\frac{1}{8}\right) \quad\left(m \geqslant 0, k_{n} \rightarrow \infty\right) \tag{3.6}
\end{equation*}
$$

which, together with the corresponding result for the zeros of (2.9).

$$
\begin{equation*}
k_{n} \sim \pi\left(n+\frac{1}{2}|m-1|-\frac{1}{4}\right), \tag{3.7}
\end{equation*}
$$

yields

$$
\begin{equation*}
\lambda_{n}^{h} \sim k_{n}+\frac{1}{8} \pi \exp \left(-2 k_{n} h\right) \quad\left(k_{n} \rightarrow \infty\right) . \tag{3.8}
\end{equation*}
$$

[^0]| | | | |
| :--- | :---: | :---: | :---: |
| h | $\lambda_{1}^{h}(3.5)$ | Molin (23) | Molin (numerical) |
| 0 | 2.006 | 2.030 | 2.006 |
| 0.05 | 1.936 | 1.955 | 1.955 |
| 0.1 | 1.877 | 1.893 | 1.902 |
| 0.2 | 1.789 | 1.800 | 1.811 |
| 0.4 | 1.684 | 1.689 | 1.696 |
| 0.6 | 1.630 | 1.633 | 1.636 |
| 0.8 | 1.602 | 1.604 | 1.605 |
| 1.0 | 1.587 | 1.588 | 1.589 |

Table 1. The eigenvalues for a slot well for $n=1$, as calculated from (3.5), Molin's (23), and Molin's numerical integration (last column).

4. Two-dimensional comparisons

The results (3.4), (3.5) and (3.8) also hold for a two-dimensional well of width $2 a$, for which $k_{n}=\frac{1}{2} n \pi$ (including both the even and odd modes) and the λ_{n}^{0} are given by table 3 in Miles (1972). The two-dimensional results for $n=1$, as given by (3.5), Molin's (23), and Molin's numerical results (personal communication), are compared in table 1. The present approximation differs from Molin's (23) only in their approximations to $\kappa_{n}, 0.783$ and 0.774 , respectively. The error in both approximations is second-order in the off-diagonal terms of the characteristic matrix. Molin's (23) is slightly more accurate than (3.5) except for rather small h, but it does not give the correct limit for $h \downarrow 0$; both approximations are within 1% of the numerical results. The asymptotic approximation (3.8) agrees to three decimals with (3.5) for $h \geqslant 0.4$ and with the numerical results for $h \geqslant 1$.

I am indebted to Dr Molin for providing me with his numerical results for λ_{1}. This work was supported in part by the Division of Ocean Sciences of the National Science Foundation Grant OCE98-03204, and by the Office of Naval Research Grant N00014-92-J-1171.

REFERENCES

Henrici, P., Troesch, B. A. \& Wuytack, L. 1970 Sloshing frequencies for a half-space with circular or strip-like aperture. Z. Angew. Math. Phys. 21, 285-318.
Miles, J. W. 1972 On the eigenvalue problem for fluid sloshing in a half-space. Z. Angew. Math. Phys. 23, 861-869
Molin, B. 2001 On the piston and sloshing modes in moonpools. J. Fluid Mech. 430, 27-50.
Rayleigh, Lord 1896 Theory of Sound. Dover.
Troesch, B. A. \& Troesch, H. R. 1972 A remark on the sloshing frequencies for a half-space. Z. Angew. Math. Phys. 23, 703-711.

[^0]: \dagger More precisely, λ_{n}^{0} in (3.4) and (3.5) are the single-mode approximations to the eigenvalues for the aperture problem, but the error in using the true λ_{n}^{0} is of the same order as that already implicit in the present single-mode approximation.

