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Gravity waves in a circular well
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The natural frequencies of gravity waves in a circular well that is bounded above by
a free surface and below by a semi-infinite reservoir are approximated by neglecting
the off-diagonal terms of the characteristic determinant (single-mode approximation)
and invoking the known results for an aperture in a half-space (well of zero depth).
A parallel argument yields the corresponding results for a two-dimensional well (a
slot). Comparison with Molin’s (2001) numerical results for a slot suggests that the
error in the single-mode approximation is . 1%.

1. Introduction
I consider here the small, gravitational oscillations of a liquid in a circular well

of radius a and depth h that is bounded above by a free surface and below by a
semi-infinite reservoir. The rectangular well has been considered by Molin (2001) as
a model of a ‘well-bay’ or ‘moonpool’ in a ship. Molin also has considered a slot
(two-dimensional) well. The limiting case, h→ 0, for circular and strip apertures has
been treated extensively (see Henrici, Troesch & Wuytack 1970; Troesch & Troesch
1972; Miles 1972).

I attack the boundary-value problem in § 2 through a Fourier–Bessel series in the
well and a Fourier–Bessel integral in the reservoir. The matching of these represen-
tations in the mouth yields an integral equation for the determination of the free
oscillations and their frequencies. In § 3, I obtain approximations to these frequencies
by neglecting the off-diagonal terms in the characteristic determinant. This permits a
direct calculation of the eigenvalue for the Helmholtz mode and the calculation of
the higher eigenvalues from those for h = 0 for either the circular well or, through a
parallel argument, its two-dimensional counterpart (a slot). Comparison with Molin’s
(2001) numerical results for a slot suggests that the error in the present approximations
is . 1%.

2. The boundary-value problem
The boundary-value problem for the circular well is governed by

∇2φ = 0 (0 < r < 1, 0 < z < h; 0 < r < ∞, −∞ < z < 0), (2.1)

φz = w(r, θ) (z = 0), φz = λφ (0 < r < 1, z = h), (2.2a, b)

φr = 0 (r = 1, 0 < z < h), (2.3)
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and

φ→ 0 (z < 0, R ≡ (r2 + z2)1/2 →∞), (2.4)

where φ = φ (r, z, θ) is the complex amplitude of the velocity potential, which we
assume to be simple harmonic with angular frequency ω; r, θ, z are dimensionless
cylindrical coordinates, with a, the radius of the well, as the unit of length; w(r, θ) is
the complex amplitude of the vertical velocity in the mouth (0 < r < 1, z = 0); w ≡ 0
in r > 1;

λ ≡ ω2a/g (2.5)

is the eigenvalue.
Separating the azimuthal dependence through the Fourier expansions

φ(r, θ, z) =

∞∑
m=0

φm(r, z)eimθ (0 < z < h), w(r, θ) =

∞∑
m=0

wm(r)eimθ, (2.6a, b)

substituting (2.6a, b) into (2.1)–(2.3), expanding wm in the Fourier–Bessel series

wm(r) =
∑
n

(Wn/In)Jm(knr), Wn =

∫ 1

0

wm(r)Jm(knr)r dr, (2.7a, b)

where the parametric dependence of kn, In, Wn and, subsequently, Zn and κn, on m is
implicit,

In ≡
∫ 1

0

J2
m(knr)r dr =

(
k2
n − m2

2k2
n

)
J2
m(kn), (2.8)

and the summation is over the complete, orthogonal set determined by

J ′m(kn) (0 < k1 < k2 < · · ·) (2.9)

(k0 = 0 is admissible if and only if h > 0), and solving (2.1) and (2.2a, b) through
separation of variables, we obtain

φm(r, z) =
∑
n

(knIn)
−1WnJm(knr)Zn(z) (0 < r < 1, 0 < z < h), (2.10)

where

Zn(z) = sinh knz + κn cosh knz, κn =
kn − λ tanh knh

λ− kn tanh knh
. (2.11a, b)

The solution of (2.1), (2.2a) and (2.4) in the reservoir is given by the Fourier–Bessel
integral

φm(r, z) =

∫ 1

0

wm(η)η dη

∫ ∞
0

Jm(kr)Jm(kη)ekz dk (z < 0). (2.12)

Equating the representations (2.10) and (2.12) in the mouth, we obtain∑
n

(κn/knIn)WnJm(knr) =

∫ 1

0

wm(η)η dη

∫ ∞
0

Jm(kr)Jm(kη) dk (0 < r < 1) (2.13)

for the determination of wm. This integral equation may be transformed to a set
of linear equations for the determination of the Fourier–Bessel coefficients Wn by
substituting wm from (2.7), multiplying by rJm(klr), and integrating over 0 < r < 1.
The end result is∑

l

ClnWn = 0, Cln = δln(κl/kl)Il −
∫ ∞

0

Ql(k)Qn(k) dk, (2.14a, b)
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where

Qn(k) =

∫ 1

0

Jm(knr)Jm(kr)r dr = k(k2
n − k2)−1Jm(kn)J

′
m(k). (2.15)

3. Single-mode approximation
The eigenvalues of the system (2.14) are determined by the determinantal condition
|Cln| = 0. The neglect of the off-diagonal terms in this condition or, equivalently, the
retention of only a single term in the Fourier–Bessel expansion (2.7a) (Molin’s ‘single
mode approximation’) yields

κn =
kn

In

∫ ∞
0

Q2
n(k) dk =

(
2k3

n

k2
n − m2

)∫ ∞
0

J ′2m (k)k2 dk

(k2 − k2
n)

2
. (3.1)

(The integrand is finite at k = kn by virtue of (2.9).)
The integral in (3.1) is intractable except for the Helmholtz mode (m = n = 0).

Substituting κn from (2.11b), letting m = 0, dividing by kn, and letting kn → k0 → 0,
we obtain

κn

kn
→ 1

λ
− h = 2

∫ ∞
0

J2
1 (k) dk

k2
=

8

3π
(m = n = 0), (3.2)

from which it follows that

λ =
1

h+ α
, α =

8

3π
= 0.849. (3.3a, b)

This result also follows by analogy with the acoustical problem of a plane wave in a
cylindrical tube that terminates in a half-space (Rayleigh 1896, § 312).

Returning to (3.1), we remark that the right-hand side thereof is, and hence the
left-hand side also must be, independent of h. Letting h = 0 and λ = λ0

n in (2.11b), we
obtain

κn = kn/λ
0
n (kn > 0), (3.4)

where λ0
n are the eigenvalues for the aperture problem (Miles 1972, table 1).† It then

follows from (2.11b) that the eigenvalues for h > 0 are given by

λhn
kn

=
1 + κn tanh knh

κn + tanh knh
= coth (knh+ tanh−1 κn) (kn > 0). (3.5)

We remark that (3.5) implies λ0
n > λhn > kn for all n > 1.

Troesch & Troesch (1972) infer from their numerical results that

λ0
n ∼ π

(
n+ 1

2
|m− 1| − 1

8

)
(m > 0, kn →∞), (3.6)

which, together with the corresponding result for the zeros of (2.9).

kn ∼ π (n+ 1
2
|m− 1| − 1

4

)
, (3.7)

yields

λhn ∼ kn + 1
8
π exp (−2knh) (kn →∞). (3.8)

† More precisely, λ0
n in (3.4) and (3.5) are the single-mode approximations to the eigenvalues for

the aperture problem, but the error in using the true λ0
n is of the same order as that already implicit

in the present single-mode approximation.
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h λh1(3.5) Molin (23) Molin (numerical)

0 2.006 2.030 2.006
0.05 1.936 1.955 1.955
0.1 1.877 1.893 1.902
0.2 1.789 1.800 1.811
0.4 1.684 1.689 1.696
0.6 1.630 1.633 1.636
0.8 1.602 1.604 1.605
1.0 1.587 1.588 1.589

Table 1. The eigenvalues for a slot well for n = 1, as calculated from (3.5), Molin’s (23), and
Molin’s numerical integration (last column).

4. Two-dimensional comparisons
The results (3.4), (3.5) and (3.8) also hold for a two-dimensional well of width

2a, for which kn = 1
2
nπ (including both the even and odd modes) and the λ0

n are
given by table 3 in Miles (1972). The two-dimensional results for n = 1, as given
by (3.5), Molin’s (23), and Molin’s numerical results (personal communication), are
compared in table 1. The present approximation differs from Molin’s (23) only in their
approximations to κn, 0.783 and 0.774, respectively. The error in both approximations
is second-order in the off-diagonal terms of the characteristic matrix. Molin’s (23) is
slightly more accurate than (3.5) except for rather small h, but it does not give the
correct limit for h ↓ 0; both approximations are within 1% of the numerical results.
The asymptotic approximation (3.8) agrees to three decimals with (3.5) for h > 0.4
and with the numerical results for h > 1.

I am indebted to Dr Molin for providing me with his numerical results for λ1.
This work was supported in part by the Division of Ocean Sciences of the National
Science Foundation Grant OCE98-03204, and by the Office of Naval Research Grant
N00014-92-J-1171.

REFERENCES

Henrici, P., Troesch, B. A. & Wuytack, L. 1970 Sloshing frequencies for a half-space with circular
or strip-like aperture. Z. Angew. Math. Phys. 21, 285–318.

Miles, J. W. 1972 On the eigenvalue problem for fluid sloshing in a half-space. Z. Angew. Math.
Phys. 23, 861–869.

Molin, B. 2001 On the piston and sloshing modes in moonpools. J. Fluid Mech. 430, 27–50.

Rayleigh, Lord 1896 Theory of Sound. Dover.

Troesch, B. A. & Troesch, H. R. 1972 A remark on the sloshing frequencies for a half-space. Z.
Angew. Math. Phys. 23, 703–711.


